Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Case Rep Crit Care ; 2021: 2032197, 2021.
Article in English | MEDLINE | ID: covidwho-1315821

ABSTRACT

Veno-venous extracorporeal membrane oxygenation (V-V ECMO) may be required to treat critically ill patients with COVID-19-associated severe acute respiratory distress syndrome (ARDS). We report the case of a 43-year-old peripartum patient, who underwent two sequential V-V ECMO runs. The first extracorporeal support was established for COVID-19 ARDS, as characterized by severe hypoxemia and hypercapnia (arterial partial pressure of oxygen to inspired oxygen fraction ratio 85 mmHg and arterial partial pressure of carbon dioxide 95 mmHg) and reduction of respiratory system static compliance to 25 mL/cmH2O, unresponsive to mechanical ventilation and prone positioning. After 22 days of lung rest, V-V ECMO was successfully removed and ventilator weaning initiated. A second V-V ECMO was required 7 days later, because of newly onset ARDS due to Pseudomonas aeruginosa ventilator-associated pneumonia. The second V-V ECMO run lasted 12 days. During both V-V ECMO runs, anticoagulation and ventilator settings were titrated through bedside thromboelastometry and electrical impedance tomography, respectively, without major complications. The patient was successfully decannulated, weaned from mechanical ventilation, and finally discharged home without oxygen therapy. At one-month follow-up, she showed good general conditions and no sign of respiratory failure.

3.
Ultrasound J ; 13(1): 10, 2021 Feb 24.
Article in English | MEDLINE | ID: covidwho-1102349

ABSTRACT

BACKGROUND: During COVID-19 pandemic, optimization of the diagnostic resources is essential. Lung Ultrasound (LUS) is a rapid, easy-to-perform, low cost tool which allows bedside investigation of patients with COVID-19 pneumonia. We aimed to investigate the typical ultrasound patterns of COVID-19 pneumonia and their evolution at different stages of the disease. METHODS: We performed LUS in twenty-eight consecutive COVID-19 patients at both admission to and discharge from one of the Padua University Hospital Intensive Care Units (ICU). LUS was performed using a low frequency probe on six different areas per each hemithorax. A specific pattern for each area was assigned, depending on the prevalence of A-lines (A), non-coalescent B-lines (B1), coalescent B-lines (B2), consolidations (C). A LUS score (LUSS) was calculated after assigning to each area a defined pattern. RESULTS: Out of 28 patients, 18 survived, were stabilized and then referred to other units. The prevalence of C pattern was 58.9% on admission and 61.3% at discharge. Type B2 (19.3%) and B1 (6.5%) patterns were found in 25.8% of the videos recorded on admission and 27.1% (17.3% B2; 9.8% B1) on discharge. The A pattern was prevalent in the anterosuperior regions and was present in 15.2% of videos on admission and 11.6% at discharge. The median LUSS on admission was 27.5 [21-32.25], while on discharge was 31 [17.5-32.75] and 30.5 [27-32.75] in respectively survived and non-survived patients. On admission the median LUSS was equally distributed on the right hemithorax (13; 10.75-16) and the left hemithorax (15; 10.75-17). CONCLUSIONS: LUS collected in COVID-19 patients with acute respiratory failure at ICU admission and discharge appears to be characterized by predominantly lateral and posterior non-translobar C pattern and B2 pattern. The calculated LUSS remained elevated at discharge without significant difference from admission in both groups of survived and non-survived patients.

SELECTION OF CITATIONS
SEARCH DETAIL